Submodular-Bregman and the Lovász-Bregman Divergences with Applications: Extended Version

نویسندگان

  • Rishabh Iyer
  • Jeff Bilmes
چکیده

We introduce a class of discrete divergences on sets (equivalently binary vectors)that we call the submodular-Bregman divergences. We consider two kinds ofsubmodular Bregman divergence, defined either from tight modular upper or tightmodular lower bounds of a submodular function. We show that the properties ofthese divergences are analogous to the (standard continuous) Bregman divergence.We demonstrate how the submodular Bregman divergences generalize manyuseful divergences, including the weighted Hamming distance, squared weightedHamming, weighted precision, recall, conditional mutual information, and ageneralized KL-divergence on sets. We also show that the generalized Bregmandivergence on the Lovász extension of a submodular function, which we call theLovász-Bregman divergence, is a continuous extension of a submodular Bregmandivergence. We point out a number of applications of the submodular Bregman andthe Lovász Bregman divergences, and in particular show that a proximal algorithmdefined through the submodular Bregman divergence provides a framework formany mirror-descent style algorithms related to submodular function optimization.We also show that a generalization of the k-means algorithm using the LovászBregman divergence is natural in clustering scenarios where ordering is important.A unique property of this algorithm is that computing the mean ordering isextremely efficient unlike other order based distance measures. Finally we providea clustering framework for the submodular Bregman, and we derive fast algorithmsfor clustering sets of binary vectors (equivalently sets of sets).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submodular-Bregman and the Lovász-Bregman Divergences with Applications

We introduce a class of discrete divergences on sets (equivalently binary vectors) that we call the submodular-Bregman divergences. We consider two kinds, defined either from tight modular upper or tight modular lower bounds of a submodular function. We show that the properties of these divergences are analogous to the (standard continuous) Bregman divergence. We demonstrate how they generalize...

متن کامل

The Lovász-Bregman Divergence and connections to rank aggregation, clustering, and web ranking: Extended Version

We extend the recently introduced theory of Lovász Bregman (LB) divergences [20] in several ways. We show that they represent a distortion between a “score” and an “ordering”, thus providing a new view of rank aggregation and order based clustering with interesting connections to web ranking. We show how the LB divergences have a number of properties akin to many permutation based metrics, and ...

متن کامل

Non-flat Clusteringwhith Alpha-divergences

The scope of the well-known k-means algorithm has been broadly extended with some recent results: first, the kmeans++ initialization method gives some approximation guarantees; second, the Bregman k-means algorithm generalizes the classical algorithm to the large family of Bregman divergences. The Bregman seeding framework combines approximation guarantees with Bregman divergences. We present h...

متن کامل

Bregman Projections over Submodular Base Polytopes

A well-known computational bottleneck in various first order methods like mirror descent is that of computing a certain Bregman projection. We give a novel algorithm, INC-FIX, for computing these projections under separable mirror maps and more generally for minimizing separable convex functions over submodular base polytopes. For minimizing divergences onto cardinality-based submodular base po...

متن کامل

Matrix Nearness Problems with Bregman Divergences

This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence. Bregman divergences offer an important generalization of the squared Frobenius norm and relative entropy, and they all share fundamental geometric properties. In addition, these divergences are intimately connected with exponential families...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013